Tailoring the shapes of Fe(x)Pt(100-x) nanoparticles.

نویسندگان

  • N Shukla
  • M M Nigra
  • T Nuhfer
  • M A Bartel
  • A J Gellman
چکیده

Fe(x)Pt(100-x) nanoparticles of varying composition have been synthesized with various shapes and sizes using a high pressure synthesis method which allows control of synthesis conditions, in particular the reaction temperature. Tailoring the shapes and sizes of Fe(x)Pt(1-x) nanoparticles allows one to control a variety of properties that are relevant to the many potential applications of metallic nanoparticles. Shape and composition can be used to control catalytic activity and to achieve high packing density in self-assembled films. Variation of both nanoparticle size and shape has been achieved by using various different solvents. The solvents used in the nanoparticle synthesis can influence the product because they can play a role as surfactants. Using solvents of various types it has been possible to synthesize Fe(x)Pt(100-x) nanoparticles with a variety of shapes including spherical, rod-like, cubic, hexagonal and high aspect ratio wires. Control of nanoparticle shape opens the door to their being used in various technological applications for which spherical nanoparticles are ineffective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Supported Pt Alloy three Dimensional Rhombus Shapes Nanoparticles for Oxygen Reduction Reaction

In this study PtFeCo ternary alloys nanoparticles of three dimentional (3D) rhombus shapes dispersed on graphene nanosheets (PtFeCo/Gr) were successfully prepared and studied as electrocatalysts for oxygen reduction reaction (ORR) in polymer-electrolyte fuel cells. A combination of analytical techniques including powder X-ray diffraction, X-ray photoelectron spectra, inductively coupled plasma-...

متن کامل

Electrocatalytic oxidation of formaldehyde onto Pt nanoparticles modified poly (m-toluidine)/Triton X-100 film

In this work, spherical Pt nanometer-scale particles supported on the poly (m-toluidine)/Triton X-100 film modified carbon nanotube paste electrode (Pt/PMT (TX-100)/MCNTPE) was used as a potent catalyst for electrooxidation of formaldehyde (HCHO) in both 0.5 M H2SO4 and 0.1 M NaOH solutions. The obtained results showed that utilization of TX-100 as an additive during the electropolymerization p...

متن کامل

Electrooxidation of Formic Acid and Formaldehyde on the Fe3O4@Pt Core-Shell Nanoparticles/Carbon-Ceramic Electrode

In the present work, the electrooxidation of formic acid and formaldehyde; potentially important fuels for future fuel cells, was investigated on the Fe3O4@Pt core-shell nanoparticles/carbon-ceramic electrode (Fe3O4@Pt/CCE). The Fe3O4@Pt nanoparticles were prepared via a simple and fast chemical method and their surface morph...

متن کامل

Magnetic properties of Fe(x)Pt(y)Au(100-x-y) nanoparticles.

Fe(x)Pt(y)Au(100-x-y) nanoparticles of size 3.5 nm were prepared by polyol reduction of platinum acetylacetonate and gold acetate and the thermal decomposition of iron pentacarbonyl. The as-synthesized nanoparticles with disordered fcc structure were then heat treated to transform to the L1(0) structure with high magnetocrystalline anisotropy. By tuning the stoichiometry of the Fe(x)Pt(y)Au(100...

متن کامل

Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction.

Synthesis of platinum (Pt) nanoparticles with controlled sizes and shapes is one of the most attractive goals in developing highly active Pt catalysts for fine chemical synthesis.1 Well-dispersed Pt nanoparticles are also an important catalyst for fuel cell reactions: they catalyze hydrogen (or alcohol) oxidation at an anode and oxygen reduction at a cathode.2 Pt nanoparticles are commonly prep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 20 6  شماره 

صفحات  -

تاریخ انتشار 2009